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CANONICAL TENSOR IN THE THEORY OF ELASTICITY 

V. V. Kuznetsov UDC 539.3 

The study [I] presented a noncanonical form of a symmetrical tensor whereby the tensor 
assumes the simplest possible (diagonal) form in principal axes. Here, we define a symmetri- 
cal tensor which changes the quadratic form of the potential energy in a unit volume of an 
elastic body to canonical form. It is shown that such a transformation can be made by an 
appropriate selection of two constants in a form analogous to the generalized Hooke's law. 

The stress-strain state in an elementary volume of an elastic body is characterized by 
the stress tensor aij and the strain tensor eij (i, j = i, ..., 3). The components of these 
tensors are connected by the elasticity relations 

o~j = bij~k~. (i) 

Here and below, bijkm is the tensor of the elastic constants. 
twice-repeated subscripts. In an isotropic elastic body 

Summation is carried out over 

(2) 

where X and ~ are the Lame constants; 6ij is the Kronecker symbol. 

We will define the canonical tensor sij as a tensor having components connected with 
the components of the strain tensor by the same relations that connect the components of the 
stress tensor with the components of the canonical tensor, i.e., 

sij = c ~ j h ~ ;  ( 3 )  
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~ = c~:~.: , .~ .  ( 4 )  

Meanwhile, we assume that the properties of symmetry are satisfied for the coefficients Cijkm 
relative to permutation of the subscripts i and j and k and m, as well as the pairs ij and- 
km. Comparison of Eqs. (3), (4), and (i) leads to the conclusion that if the canonical ten- 
sor exists, then it has certain interesting properties of duality. On the one hand, in ac- 
cordance with (3), sij can be regarded as representing certain "stresses." On the other 
hand, in accordance wlth (4), it can be regarded as representing certain "strains~" In order 
for oij to ]be a real stress tensor, the constants Cijkm must be linked by the relation 

c~h~ch,.~,  = b ~ , . .  (5)  

Thus, finding the canonical tensor entails determination of the constants Cijkm. We will 
assume that the coefficients Cijkm can be found in the form of coefficients bijkm (2) satis- 
fying the above-mentioned symmetry properties: 

c~jh,~ = ~,~i~6k~ + ~ , ( 6 1 ~  + ~i~6~k). (6)  

Here, ~,  and p ,  a re  unknown n e g a t i v e  c o n s t a n t s .  I n s e r t i n g  (2) and (6) in to  (5) ,  :we have 

[L,6ijbh~ + ~,(6~h~ + 6 i~)1[~ ,6~6~ + ~,(6~,6~ + 6~6~)1 = ~6~6~, + ~ ( 6 i ~  + 6 i ~ .  (7) 

With allowance for the identities 6ij~ij = 3, 6ik6km = 6im , ~ik = 6ki, we reduce gq. 
(7) to the form 

( a ~  + 4 ~ , ~ .  - ~) ~,~. + ( 2 ~  - ~ ) ( ~ , ~  + ~ , ~ )  : 0~ 

from which we obtain two equations to determine X, and P,: 

3 ~ + 4 ~ , ~ , - - ~ = 0 ,  2 ~ - - ~ = 0 .  (8) 

In accordance with the condition adopted above, we will restrict ourselves to nonnegative 
solutions of Eqs. (8) 

~, = ~/[(29 + 3X) 1/2 + (2~)1/2],. ~$ = (~/2) 1/2. (9) 

Here, (2~ + 3X) is the bulk modulus of expansion. Thus, if we determine the coefficients 
Cijkm with Eqs. (6) and (9), then the tensor sij Will have properties (3) and (4). Also, 
it-follows from (2) and (6) that all three tensors eij , sij , and oij are coaxial. 

We wilJL use the tensor sij to write the potential strain energy He in a unit volume of 
1 _ ! 

the elastic body: H... = 2oijeij - ~CijkmSkmeij. However, in accordance with (3) and the sym- 
metry properties of the coefficients Cijkm , 

l I 2 (10) H, =-y(ck~ijei~)s~ =--/sh~. 

Thus, the potential energy in a unit volume of the elastic body is written in terms of the 
sum of the squares of the components of the canonical tensor with a multiplier of I/2, i.e., 
it turns out: to be reduced to canonical form [2]. The designation of the tensor as sij is 
in fact related to this reduction property. Due to the symmetry properties sij = sji , Eq. 
(10) contains the squares of six unknown components. It should be noted that for proof of 
the positive determinateness of the potential energy, it is customary [3-6] to employ a re- 
duction to the sum of the squares of seven quantities; the possibility of a reduction to the 
sum of the squares of six quantities follows from the theory of quadratic forms [2]. Since 
the potential energy in a unit volume is a quadratic invariant, it can be written in terms 

1 2 of the first: Im and second 12 invariants of the canonical tensor: n, = ~I I - 12. 

In view of the above-noted features of the tensor sij , it is natural to suppose that 
it has certain energy properties. Of these properties, we mention the properties of "reci- 
procity," 

aH,!O~ij = CijkmShm, OH,IOsij = c i j k ~ , :  

OH,/asij  = cij~m h~, a H , / a ~ j  = ci~km k~ 

where Cijkm i are coefficients which are the inverse of Cijkm in Eqs. (3) and (4), i.e., 
-i -i 

eij = Cijkm Skm, sij = Cijkm Okm- 
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In the uniaxial tension of a medium (Poisson's ratio v = 0) with nonvanishing components 
ezl , s11 , and 011 , we have the relations s11 = E1/2elz = E-I/2Oll, H, = �89 2 (E is the elas- 
tic modulus). As can be seen, the dimension of the components sij is equal to the square 
root of the stress dimension. The components sij do not have any particular physical sig- 
nificance, but they are measures of the intensity of the stress-strain state. The sum of 
the squares of these components is proportional to the energy stored in a unit volume. 
Thanks to the homogeneity of the energy expression in terms of sij, it is convenient to use 
when developing algorithms for operations connected with variation of energy in direct varia- 
tional methods [7-9]. For example, canonical forms of potential energy similar to those pre- 
sented above have been used in the theory of shells to obtain the stiffness matrix of flex- 
ural finite elements and to calculate geometrically nonlinear strain states of thin elastic 
bodies [i0]. Such cases entail examination of the dependence of sij on discrete parameters 
qk (k = 1 .... , n) serving as unknowns in the problem of elastic equilibrium, i.e., sij = 
sij(qz, "'', qn)" With a linea r dependence of sij on qk, the potential energy in a unit vol- 
ume is written in the form 

i OsijOsij 
H, =Tk~pq~qp, k,p = OqrOqp. 

Here, krp are coefficients of the symmetrical stiffness matrix [8]. 

We thank A. L. Gol'denveizer for his discussion of related aspects in the theory of 
elastic shells and V. V. Kabanov for several useful observations. 

LITERATURE CITED 

i. A. E. Green and J. E. Adkins, Large Elastic Deformations, 2nd Ed., Oxford Univ. Press, 
(1971). 

2. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1967). 
3. A. I. Lur'e, Theory of Elasticity [in Russian], Nauka, Moscow (1970). 
4. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York 

(1969), 
5. k. E. Love, Treatise on the Mathematical Theory of Elasticity, ~th Ed., Dover, New York 

(1927)~ 
6. V. V. Novozhilov, Theory of Elasticity [in Russian], Sudpromgiz, Leningrad (1958). 
7. L. S. Leibenzon, Variational Methods of Solving Problems of the Theory of Elasticity 

[in Russian], Gostekhizdat, Moscow (1943). 
8. J. T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1972). 
9. V. L. Berdichevskii, Variational Principles of Continuum Mechanics [in Russian], Nauka, 

Moscow (1983). 
i0. V. V. Kuznetsov, "Elementary analysis of the geometry of surfaces and the finite ele- 

ments method in the mechanics of elastic shells with arbitrary displacements," Sub- 
mitted to VIMI 1.11.84, No. D06203, Moscow (1984). 

780 


